Chromatic Polynomials and Representations of the Symmetric Group
نویسنده
چکیده
The chromatic polynomial P (G; k) is the function which gives the number of ways of colouring a graph G when k colours are available. The fact that it is a polynomial function of k is essentially a consequence of the fact that, when k exceeds the number of vertices of G, not all the colours can be used. Another quite trivial property of the construction is that the names of the k colours are immaterial; in other words, if we are given a colouring, then any permutation of the colours produces another colouring. In this talk I shall outline some theoretical developments, based on these simple facts and some experimental observations about the complex roots of chromatic polynomials of ‘bracelets’. A ‘bracelet’ Gn = Gn(B, L) is formed by taking n copies of a graph B and joining each copy to the next by a set of links L (with n + 1 = 1 by convention). The chromatic polynomial of Gn can be expressed in the form
منابع مشابه
Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملChromatic Polynomials of some Families of Graphs I: Theorems and Conjectures
The chromatic polynomials of ‘bracelets’ can be studied by means of a theory based on representations of the symmetric group. This paper contains a detailed study of the theory as it relates to one type of bracelet. The underlying theory is presented rather more clearly than hitherto, and some surprising features are exhibited. The methods involve an extension of the standard theory of distance...
متن کاملChromatic polynomials of some nanostars
Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
متن کاملChromatic polynomials and toroidal graphs
The chromatic polynomials of some families of quadrangulations of the torus can be found explicitly. The method, known as ‘bracelet theory’ is based on a decomposition in terms of representations of the symmetric group. The results are particularly appropriate for studying the limit curves of the chromatic roots of these families. In this paper these techniques are applied to a family of quadra...
متن کاملSpecht modules and chromatic polynomials
An explicit formula for the chromatic polynomials of certain families of graphs, called ‘bracelets’, is obtained. The terms correspond to irreducible representations of symmetric groups. The theory is developed using the standard bases for the Specht modules of representation theory, and leads to an effective means of calculation. MSC 2000: 05C15, 05C50.
متن کاملSymmetry classes of polynomials associated with the dihedral group
In this paper, we obtain the dimensions of symmetry classes of polynomials associated with the irreducible characters of the dihedral group as a subgroup of the full symmetric group. Then we discuss the existence of o-basis of these classes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001